Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Neural Regen Res ; 19(12): 2773-2784, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595294

RESUMO

JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients. Development of effective therapies for chronic spinal cord injury patients is needed. We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal cord injury to compare intensive rehabilitation (weight-bearing walking training) alone with surgical intervention plus intensive rehabilitation. This clinical trial was registered at ClinicalTrials.gov (NCT02663310). The goal of surgical intervention was spinal cord detethering, restoration of cerebrospinal fluid flow, and elimination of residual spinal cord compression. We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement, reduced spasticity, and more rapid bowel and bladder functional recovery than weight-bearing walking training alone. Overall, the surgical procedures and intensive rehabilitation were safe. American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries. Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.

3.
Acc Chem Res ; 57(8): 1163-1173, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556989

RESUMO

ConspectusSince their commercialization in the 1990s, lithium-ion batteries (LIBs) have been increasingly used in applications such as portable electronics, electric vehicles, and large-scale energy storage. The increasing use of LIBs in modern society has necessitated superior-performance LIB development, including electrochemical reversibility, interfacial stability, efficient kinetics, environmental adaptability, and intrinsic safety, which is difficult to simultaneously achieve in commercialized electrolytes. Current electrolyte systems contain a solution with Li salts (e.g., LiPF6) and solvents (e.g., ethylene carbonate and dimethyl carbonate), in which the latter dissolves Li salts and strongly interacts with Li+ (lithiophilic feature). Only lithiophilic agents can be functionally modified (e.g., additives and solvents), altering the bulk and interfacial behaviors of Li+ solvates. However, such approaches alter pristine Li+ solvation and electrochemical processes, making it difficult to strike a balance between the electrochemical performance and other desired electrolyte functions. This common electrolyte design in lithiophilic solvents shows strong coupling among formulation, coordination, electrochemistry, and electrolyte function. The invention of lithiophobic cosolvents (e.g., multifluorinated ether and fluoroaromatic hydrocarbons) has expanded the electrolyte design space to lithiophilic (interacts with Li+) and lithiophobic (interacts with solvents but not with Li+) dimensions. Functional modifications switch to lithiophobic cosolvents, affording superior properties (carried by lithiophobic cosolvents) with little impact on primary Li+ solvation (dictated by lithiophilic solvents). This electrolyte engineering technique based on lithiophobic cosolvents is the 2D electrolyte (TDE) principle, which decouples formulation, coordination, electrochemistry, and function. The molecular-scale understanding of TDEs is expected to accelerate electrolyte innovations in next-generation LIBs.This Account provides insights into recent advancements in electrolytes for superior LIBs from the perspective of lithiophobic agents (i.e., lithiophobic additives and cosolvents), establishing a generalized TDE principle for functional electrolyte design. In bulk electrolytes, a microsolvating competition emerges because of cosolvent-induced dipole-dipole and ion-dipole interactions, forming a loose solvation shell and a kinetically favorable electrolyte. At the electrode/electrolyte interface, the lithiophobic cosolvent affords reliable passivation and efficient desolvation, with interfacial compatibility and electrochemical reversibility even under harsh conditions. Based on this unique coordination chemistry, functional electrolytes are formulated without significantly sacrificing their electrochemical performance. First, lithiophobic cosolvents are used to tune Li+-solvent affinity and anion mobility, promoting Li+ diffusion and electrochemical kinetics of the electrolyte to benefit high-rate and low-temperature applications. Second, the lithiophobic cosolvent undergoes less thermally induced decomposition and constructs a thermally stable interphase in TDEs, affording electrolytes with high-temperature adaptability and cycling stability. Third, the lithiophobic cosolvent modifies the local Li+-solvent-anion topography, controlling electrolyte electrochemical reversibility to afford numerous promising solvents that cannot be used in common electrolyte design. Finally, the lithiophobic cosolvent mitigates detrimental crosstalk between flame retardants and carbonate solvents, improving the intrinsic electrolyte safety without compromising electrochemical performance, which broadens the horizons of electrolyte design by optimizing versatile cosolvents and solvents, inspiring new ideas in liquid electrochemistry in other battery systems.

5.
Cureus ; 16(3): e56335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633952

RESUMO

Background This study aimed to investigate the effectiveness of ultrasonography (US) and in vitro measurement (IVM) methods in localizing peripherally inserted central catheters (PICCs) in premature infants and analyze the relevant factors affecting the accuracy of IVM. Methodology The study employs a prospective before-and-after self-controlled clinical trial design. A total of 210 premature infants who underwent PICC catheterization were compared. We assessed the rate of catheter tip placement, consistency, and stability and analyzed the relevant factors. Results The study enrolled a total of 202 premature infants after eight infants dropped out. The one-time positioning rates of the PICC catheter tip using US and IVM were 100% and 73.8%, respectively. Concerning IVM, 53 (26.2%) patients did not reach the optimal position, with 24 (11.8%) patients having a shallow position and 29 (14.3%) having a deep position. The consistency of the two methods was 0.782 (p < 0.05). The degree of dispersion of US was 0.2 (0.0-0.4) cm, which was significantly smaller than IVM at 1.5 (0.0-1.8) cm. Gestational age less than 32 weeks (odds ratio (OR) = 6.64, 95% confidence interval (CI) = 1.43-30.81), weight less than 1,500 g (OR = 5.85, 95% CI = 2.11-16.20), body length less than 40 cm (OR = 15.36, 95% CI = 4.47-52.72), mechanical ventilation (OR = 5.13, 95% CI = 1.77-14.83), abdominal distension (OR = 78.18, 95% CI = 10.62-575.22), and bloating (OR = 8.81, 95% CI = 1.42-47.00) were risk factors that affected the accuracy of IVM. Conclusions Gestational age, weight, length, mechanical ventilation, abdominal distension, and swelling can lead to deviations with IVM. US can directly view the tip of the catheter, which is more accurate. Additionally, it is recommended to reduce the length of the catheter by 1.3 cm when using IVM to achieve the best-estimated placement length.

6.
Environ Sci Technol ; 58(16): 7066-7077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597811

RESUMO

Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 µmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.


Assuntos
Carbono , Espécies Reativas de Oxigênio , Estações do Ano , Solo , Solo/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
7.
Eur J Neurosci ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501537

RESUMO

Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated ß-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the ß-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of ß-catenin. Hcy-upregulated KEAP1 competed with ß-catenin to bind to WTX. Knockdown of both ß-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-ß-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.

8.
J Dig Dis ; 25(2): 78-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450936

RESUMO

Inflammatory bowel disease (IBD), mainly comprising ulcerative colitis and Crohn's disease, is a group of gradually progressive diseases bringing significant mental anguish and imposes serious economic burdens. Interplay of genetic, environmental, and immunological factors have been implicated in its pathogenesis. Nutrients, as crucial environmental determinants, mainly encompassing carbohydrates, fats, proteins, and micronutrients, are closely related to the pathogenesis and development of IBD. Nutrition is essential for maintaining the dynamic balance of intestinal eco-environments to ensure intestinal barrier and immune homeostasis, while this balance can be disrupted easily by maladjusted nutrition. Research has firmly established that nutrition has the potential to shape the composition and function of gut microbiota to affect the disease course. Unhealthy diet and eating disorders lead to gut microbiota dysbiosis and further destroy the function of intestinal barrier such as the disruption of membrane integrity and increased permeability, thereby triggering intestinal inflammation. Notably, appropriate nutritional interventions, such as the Mediterranean diet, can positively modulate intestinal microecology, which may provide a promising strategy for future IBD prevention. In this review, we provide insights into the interplay between nutrition and gut microbiota and its effects on IBD and present some previously overlooked lines of evidence regarding the role of derived metabolites in IBD processes, such as trimethylamine N-oxide and imidazole propionate. Furthermore, we provide some insights into reducing the risk of onset and exacerbation of IBD by modifying nutrition and discuss several outstanding challenges and opportunities for future study.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Intestinos/patologia , Doença de Crohn/complicações , Dieta/efeitos adversos , Disbiose/complicações
9.
Neural Regen Res ; 19(11): 2543-2552, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526290

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.

10.
Dalton Trans ; 53(12): 5665-5675, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445301

RESUMO

The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and µ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, µ2-OH-, and µ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.

11.
Water Res ; 255: 121516, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552490

RESUMO

Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.

12.
Sci Bull (Beijing) ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38453538

RESUMO

The flourishing expansion of the lithium-ion batteries (LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO4 cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ∼90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.

13.
J Oral Rehabil ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414129

RESUMO

BACKGROUND: Oxidative stress indicators affect chronic orofacial pain (COFP), but how to reduce these effects is uncertain. OBJECTIVES: 11 oxidative stress biomarkers were collected as exposures, while four forms of COFP were chosen as outcomes for Mendelian randomization (MR) study. METHODS: The effect estimates between oxidative stress and COFP were calculated using inverse variance-weighted MR (IVW-MR). Then, functional mapping and annotation (FUMA) was utilized in order to carry out SNP-based functional enrichment analyses. In addition, the IVW-MR method was applied to combine effect estimates when using genetic variants associated with oxidative stress biomarkers as an instrument for exploring potential druggable targets. RESULTS: The results indicated that oxidative stress biomarkers (causal OR of uric acid (UA), 0.998 for myofascial pain, 95% CI 0.996-1.000, p < .05; and OR of glutathione transferase (GST), 1.002 for dentoalveolar pain, 95% CI 1.000-1.003, p < .05) were significantly linked with the probability of COFP. Functional analysis also demonstrated that UA and myofascial pain genes were prominent in nitrogen and uracil metabolism, while GST and dentoalveolar pain genes were enriched in glutathione metabolism. Also, the study provided evidence that solute carrier family 2 member 9 (SLC2A9) and glutathione S-transferase alpha 2 (GSTA2) cause discomfort in the myofascial pain (OR = 1.003, 95% CI 1.000-1.006; p < .05) and dentoalveolar region (OR = 1.001, 95% CI 1.000-1.002; p < .05), respectively. CONCLUSIONS: In conclusion, this MR study indicates that genetically predicted myofascial pain was significantly associated with decreased UA and dentoalveolar pain was significantly associated with increased GST level. SLC2A9 inhibitor and GSTA2 inhibitor were novel chronic orofacial pain therapies and biomarkers, but clinical trials are called to examine if these oxidative biomarkers have the protective effect against orofacial pain, and further research are needed to explore the underlying mechanisms.

14.
Small ; : e2311044, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368268

RESUMO

The increasing demand for large-scale energy storage propels the development of lithium-ion batteries with high energy and high power density. Low tortuosity electrodes with aligned straight channels have proved to be effective in building such batteries. However, manufacturing such low tortuosity electrodes in large scale remains extremely challenging. In contrast, high-performance electrodes with customized gradients of materials and porosity are possible to be made by industrial roll-to-roll coating process. Yet, the desired design of gradients combining materials and porosity is unclear for high-performance gradient electrodes. Here, triple gradient LiFePO4 electrodes (TGE) are fabricated featuring distribution modulation of active material, conductive agent, and porosity by combining suction filtration with the phase inversion method. The effects and mechanism of active material, conductive agent, and porosity distribution on electrode performance are analyzed by experiments. It is found that the electrode with a gradual increase of active material content from current collector to separator coupled with the distribution of conductive agent and porosity in the opposite direction, demonstrates the best rate capability, the fastest electrochemical reaction kinetics, and the highest utilization of active material. This work provides valuable insights into the design of gradient electrodes with high performance and high potential in application.

15.
Endoscopy ; 56(S 01): E116-E117, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38325413
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 26-33, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403601

RESUMO

Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen's Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.


Assuntos
Fases do Sono , Sono , Fases do Sono/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos , Algoritmos
17.
Chem Commun (Camb) ; 60(21): 2914-2917, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372145

RESUMO

Nickel-based electrocatalysts for water oxidation suffer from low activity and poor stability. In this work, 0.015 mg cm-2 TiO2 nanosheets anchored on Ni foam addressed these problems after electrochemical activation. In situ investigations, including Raman spectra, corroborated the enhanced generation of highly active Ni(III)-O-O species on Ni foam in the presence of trace TiO2.

18.
NPJ Vaccines ; 9(1): 46, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409165

RESUMO

Group A Streptococcus (GAS) is a significant human pathogen that poses a global health concern. However, the development of a GAS vaccine has been challenging due to the multitude of diverse M-types and the risk of triggering cross-reactive immune responses. Our previous research has identified a critical role of PrsA1 and PrsA2, surface post-translational molecular chaperone proteins, in maintaining GAS proteome homeostasis and virulence traits. In this study, we aimed to further explore the potential of PrsA1 and PrsA2 as vaccine candidates for preventing GAS infection. We found that PrsA1 and PrsA2 are highly conserved among GAS isolates, demonstrating minimal amino acid variation. Antibodies specifically targeting PrsA1/A2 showed no cross-reactivity with human heart proteins and effectively enhanced neutrophil opsonophagocytic killing of various GAS serotypes. Additionally, passive transfer of PrsA1/A2-specific antibodies conferred protective immunity in infected mice. Compared to alum, immunization with CFA-adjuvanted PrsA1/A2 induced higher levels of Th1-associated IgG isotypes and complement activation and provided approximately 70% protection against invasive GAS challenge. These findings highlight the potential of PrsA1 and PrsA2 as universal vaccine candidates for the development of an effective GAS vaccine.

19.
Insect Sci ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369568

RESUMO

Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.

20.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336054

RESUMO

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Assuntos
Cádmio , Neoplasias , Camundongos , Animais , Cádmio/farmacologia , Linhagem Celular Tumoral , Glutamina/metabolismo , Glutamina/farmacologia , 60645 , Transição Epitelial-Mesenquimal , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...